


## TCTAP 2014 Difficult Iliac Total Occlusion-Options when You Don't Have an Outback Catheter

Mu-Yang Hsieh National Taiwan University Hospital, Hsinchu Branch, Hsinchu, Taiwan



### **TCTAP2014** Iliac Artery Total Occlusion



 TASC B, endovascular interventions: a reasonable first attempt





## **Case Presentation**

- Mr. Huang
- 45-year-old man
- Claudication of left lower limb for 1 year, progressive
- Walked only 100 meters
- Rutherford stage 3
- Ankle-brachial index: Rt/Lt 0.8/0.6
- Vascular Duplex:
  - Bilateral iliac arteries stenosis or occlusion
  - Bilateral CFA to infra-popliteal arteries patent





## Diagnostic angiogram



Severe stenosis of Lt EIA

19th CARDIOVASCULAR SUMMIT

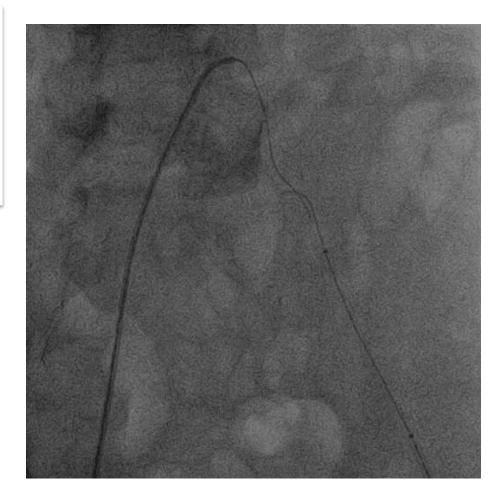
## Retrograde RFA puncture



Total occlusion from Lt CIA ostium Stenosis of Rt CIA JR4 6 Fr retrograde from RFA



## Retrograde Rt Side Approach




Failed to reenter after PTA in Lt CIA-EIA

## 19th CARDIOVASCULAR SUMMIT

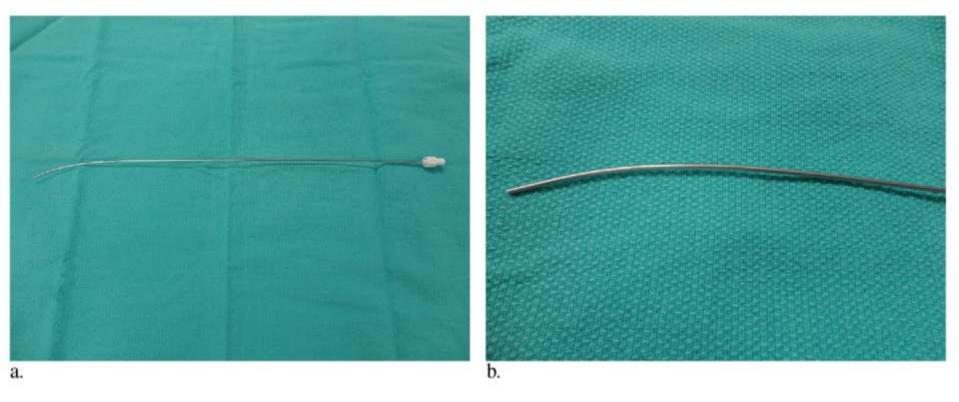
## Failed?

- Cross-over sheath
  inserted
- Double balloon technique tried, but failed...



#### Failed to reenter after PTA in Lt CIA-EIA




### TCTAP2014 Failed Iliac Interventions

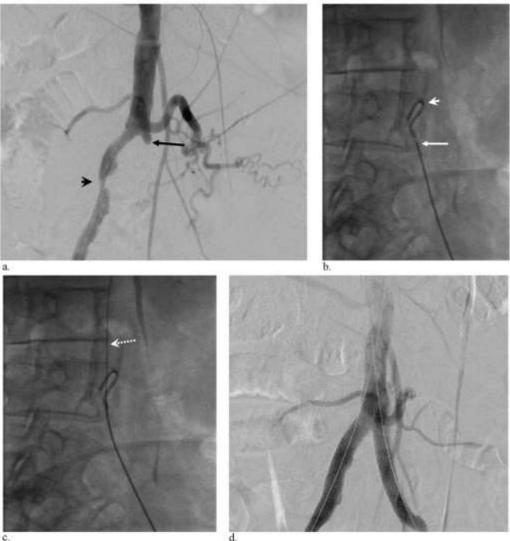
- Failure rate for iliac CTOs
  - 20-40%, varied widely
- Most common causes of iliac occlusion intervention failure
  - The reentry into true lumen may be very difficult
  - The reentry level into aorta may be unpredictable
  - The sub-intimal dissection may be extensive
- Surgical management:
  - Fix Rt CIA first then refer for femoro-femoral bypass surgery



- Sharafuddin MJ, Hoballah JJ, Kresowik TF, Nicholson RM, Sharp WJ. Impact of aggressive endovascular recanalization techniques on success rate in chronic total arterial occlusions (CTOs). Vascular and endovascular surgery 2010; 44:460-467.
  - Murphy TP, Marks MJ, Webb MS. Use of a curved needle for true lumen re-entry during subintimal iliac artery revascularization. J Vasc Interv Radiol 1997; 8:633-636.

#### 19th CARDIOVASCULAR SUMMIT TCTAP 2014 Options for Re-entry 1



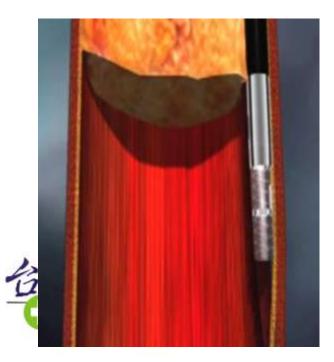

• The metal stiffener from an 8-F universal pigtail drainage catheter

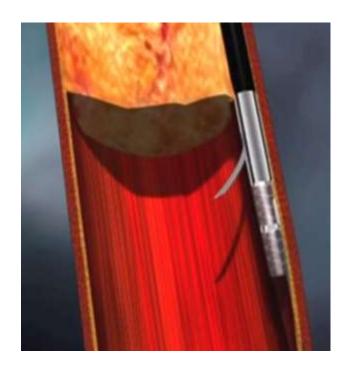
(Bard). Close-up view of manually shaped tip.



Smyth KR, Hadziomerovic A. Chronic total occlusion of the iliac artery: endoluminal reentry using a metal stiffening cannula. J Vasc Interv Radiol 2013; 24:1043-1047.

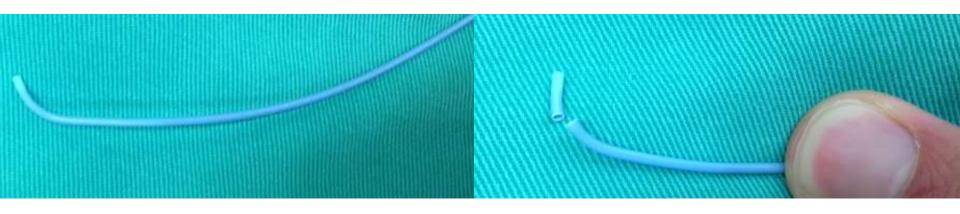
#### 19th CARDIOVASCULAR SUMMIT TCTAP 2014 Options for Re-entry 2




• Reentry technique with the use of the metal stiffener.

### 19th CARDIOVASCULAR SUMMIT TCTAP 2014 Options for Re-entry 3

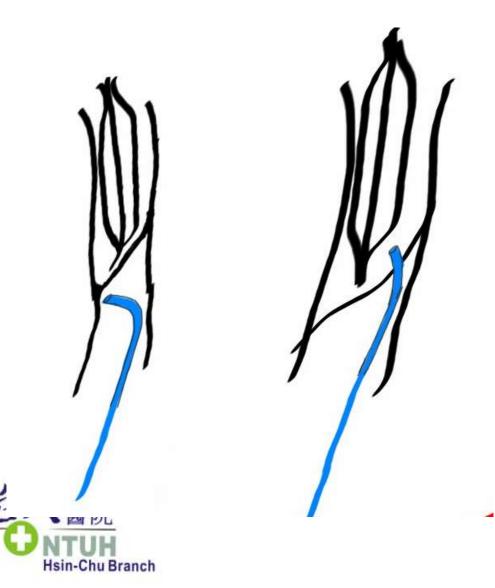

- The metal stiffening cannula
- The curved needle method
- The Outback catheter (Cordis)





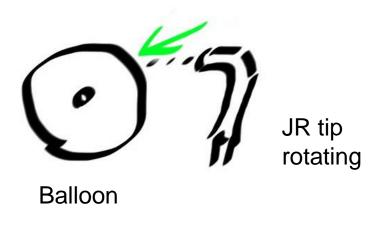
- Murphy TP, Marks MJ, Webb MS. Use of a curved needle for true lumen re-entry during subintimal iliac artery revascularization. J Vasc Interv Radiol 1997; 8:633-636.
- Vorwerk D, Guenther RW, Schurmann K, Wendt G, Peters I. Primary stent placement for chronic iliac artery occlusions: follow-up results in 103 patients. Radiology 1995; 194:745-749.

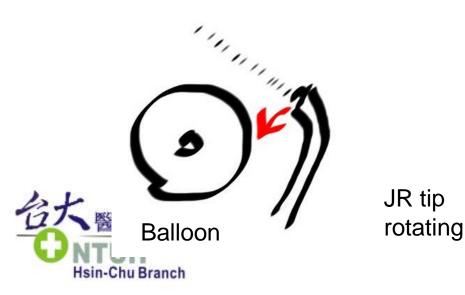
### TCTAP2014 Options when you don't have an Outback Catheter




- 1. Use a scissor to shorten the JR4 catheter tip, in order to obtain a better angled tip.
- 2. Then combine it with a high tip-load CTO coronary wire (Provia 12).

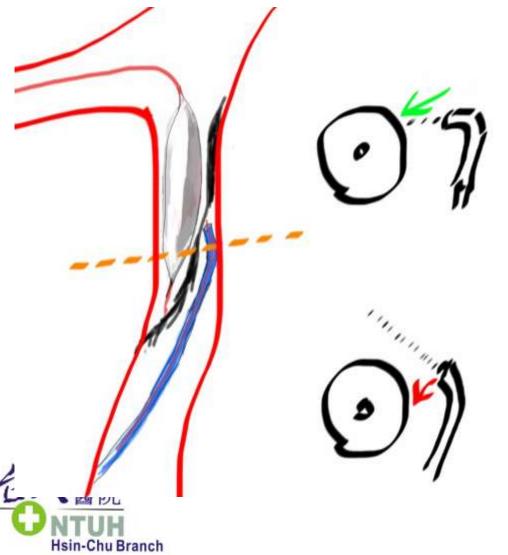



3. Combine 1 & 2 by reverse CART technique.


## TCTAP 2014 Adjust the puncture angle...



- With shortened tip, the JR catheter has a different angle of attack.
- JR4 also becomes easier to be rotated in the sub-intimal space.


### 19<sup>th</sup> CARDIOVASCULAR SUMMIT TCTAP 2014 Adjust the puncture angle...





- We then rotate the tube to obtain a good view to adjust the attack angle.
- By rotating the JR4, we directed the CTO wire to the balloon.

## TCTAP2014 Adjust the puncture angle...



- Use a scissor to shorten the JR4 catheter tip, in order to obtain a better angled tip.
- 2. Then combine it with a high tip-load CTO coronary wire (Provia 12).
- 3. Combine 1 & 2 by reverse CART technique.



## Retrograde Lt Side Approach



Rt retrograde PTA, with attempted reverse CART technique in Lt CIA



## Retrograde Lt Side Approach



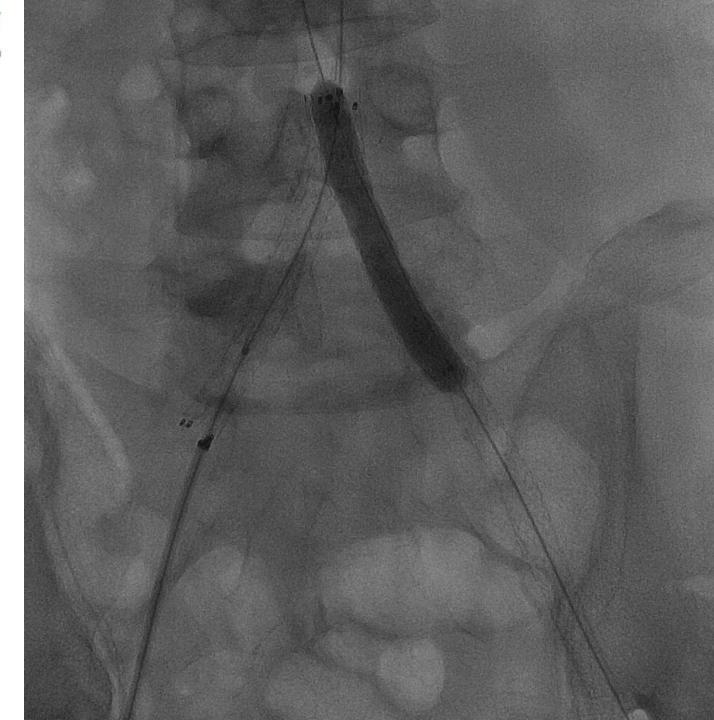
Successfully reentered true lumen into aorta



### After PTA



Two stents at iliac bifurcation


## 19<sup>th</sup> CARDIOVASCULAR SUMMIT

## Stenting at Iliac Bifurcation



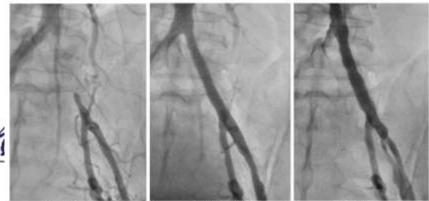
Two stents at iliac bifurcation Self-expandable stents: 10 mm x 60 mm x2

# 19th CARDIOVASCULAR SUMMIT





# 19th CARDIOVASCULAR SUMMIT


### Final





### TCTAP2014 Results of Self-Expandable Stents

Table 1 Patient characteristics n = 82 patients Parameter  $74.5 \pm 10.0$ Age, (years) Men, n (%) 63 (76.8) Hypertension, n (%) 53 (64.6) Dyslipidemia, n (%) 37 (45.1) Diabetes mellitus, n (%) 50 (61.0) Cerebrovascular disease, n (%) 5 (6.1) Coronary artery disease, n (%) 33 (40.2) Hemodialysis, n (%) 8 (9.8) History of smoking, n (%) 29 (35.4) Current smoker, n (%) 13 (15.9)  $0.56 \pm 0.21$ Preoperative ABI



#### 1

baseline

postprocedure

12 Mo

| Table 2 | Lesion | characteristics |
|---------|--------|-----------------|
| rable 4 | Lesion | characteristics |

| Parameter                                  | n = 86 limbs  |
|--------------------------------------------|---------------|
| Lesion location                            |               |
| CIA <sup>a</sup> , <i>n</i> (%)            | 51 (59.3)     |
| EIA <sup>b</sup> , <i>n</i> (%)            | 19 (23.1)     |
| CIA and EIA, n (%)                         | 16 (18.6)     |
| Fontaine classification                    |               |
| 2 (intermittent claudication), n (%)       | 47 (54.7)     |
| 3 (rest pain), n (%)                       | 16 (18.6)     |
| 4 (critical limb ischemia), n (%)          | 23 (26.7)     |
| TASC II classification (%)                 |               |
| Type B, n (%)                              | 34 (39.5)     |
| Type C, n (%)                              | 22 (25.6)     |
| Type D, n (%)                              | 30 (34.9)     |
| IVUS findings                              |               |
| Heavy calcification, $n$ (%)               | 27 (31.3)     |
| Mean reference diameter, (mm $\pm$ SD)     | $7.2\pm0.8$   |
| Proximal reference diameter, (mm $\pm$ SD) | $8.5 \pm 1.2$ |
| Distal reference diameter, (mm $\pm$ SD)   | $5.8 \pm 0.7$ |

Araki M, Hirano K, Nakano M, et al.

Two-year outcome of the self-expandable stent for chronic total occlusion of the iliac artery.

Cardiovascular intervention and therapeutics 2013.

## TCTAP2014 Results of Self-Expandable Stents

- Iliac total occlusions treated with selfexpandable stents:
  - Good long term results
  - Primary patency rates: 96.5% at 2 years
  - No rupture or complications
  - among 86 cases

Hsin-Chu Branch

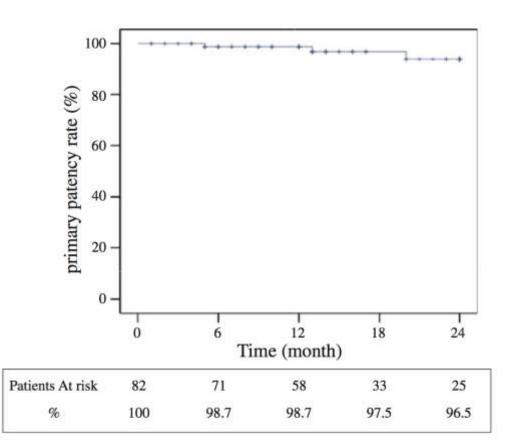
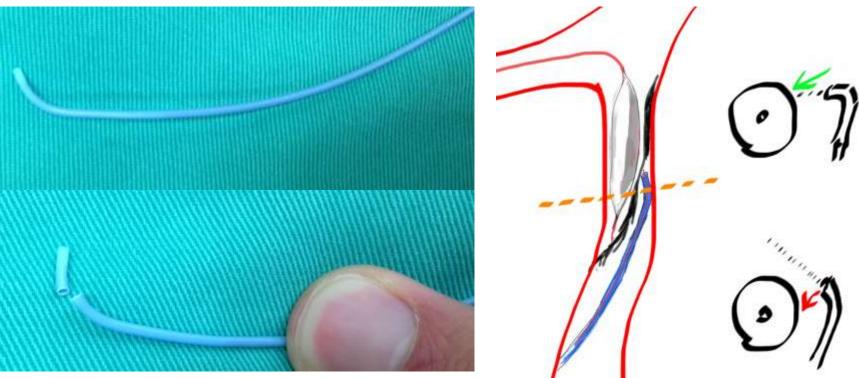
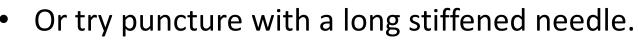



Fig. 3 Cumulative primary patency rate with self-expandable stent. (Kaplan-Meier analysis)

Araki M, Hirano K, Nakano M, et al.


Two-year outcome of the self-expandable stent for chronic total occlusion of the iliac artery.

Cardiovascular intervention and therapeutics 2013.




Hsin-Chu Branch

### Discussion



- When you don't have an Outback catheter...
- Try another method: modified JR tip and reverse CART...

